
UCRL-CONF-228332

Performance-Driven Interface
Contract Enforcement for
Scientific Components

T. Dahlgren

February 26, 2007

The 10th International Symposium on Component-Based
Software Engineering
Medford, MA, United States
July 9, 2007 through July 11, 2007



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



Performance-Driven Interface Contract

Enforcement for Scientific Components

Tamara L. Dahlgren

Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
dahlgren1@llnl.gov ?

Abstract. Several performance-driven approaches to selectively enforce
interface contracts for scientific components are investigated. The goal is
to facilitate debugging deployed applications built from plug-and-play
components while keeping the cost of enforcement within acceptable
overhead limits.
This paper describes a study of global enforcement using a priori execu-
tion cost estimates obtained from traces. Thirteen trials are formed from
five, single-component programs. Enforcement experiments conducted
using twenty-three enforcement policies are used to determine the nature
of exercised contracts and the impact of a variety of sampling strategies.
Performance-driven enforcement appears to be best suited to programs
that exercise moderately expensive contracts.

1 Introduction

Selective, performance-driven interface contract enforcement is intended to help
scientists gain confidence in software built from plug-and-play components while
retaining their code’s high performance. This work is a natural extension of
decades of research in component technology and software quality. For the pur-
poses of this work, a component is defined as an independent software unit with
an interface specification describing how it should be used [3]. Hence, caller and
callee are loosely coupled through the callee’s interfaces. Thus, logical feature
groupings within existing scientific libraries can be wrapped as components.

Interchangeable components based on varying characteristics such as the un-
derlying model, precision, and reliability were key features of the vision pub-
lished in McIlroy’s 1968 seminal paper on software components [4]. Grassroots
efforts were begun in the late 1990’s by the Common Component Architecture
(CCA) Forum [5–8] to bring component-based software engineering to the high-
performance scientific computing community. At present, eleven institutions —
consisting of national laboratories, universities, and research-based companies —
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are actively involved in collaborative efforts to further facets of the organization’s
goals. This research is part of the CCA’s software quality initiative.

The Institute of Electrical and Electronics Engineers (IEEE) [9] defines qual-
ity as “the degree to which a system, component, or process meets” its specifi-
cations, needs, or expectations. Interface contracts are specifications that take
the form of preconditions, postconditions, and or invariants that belong to the
interface, not the the underlying implementation(s). Preconditions are assertions
on properties that must hold prior to method execution. Postconditions are as-
sertions that must hold upon method completion. Invariants apply before and
after method execution. Hence, interface contracts are specifications that are
amenable to automated enforcement.

Interface contracts are related to a practice traditionally referred to as “de-
fensive programming”. Conscientious developers have long relied on assertions at
the top of their routines to protect their software from bad inputs. The basic in-
tent is to catch potential input-related problems before they cause the program
to unexpectedly crash. These kinds of checks should always be retained since
contracts may not be enforced during deployment. However, interface contracts
are broader in scope since they can include constraints on other properties of
the input as well as properties of the output, the component, and its state.

Since scientific components are developed by people with different back-
grounds and training, it is not safe to assume that everyone uses the same level of
rigor in their software development practices — especially in the case of research
software. This fact does not preclude the potential advantages for scientists to
experiment with different research components providing similar computational
services. Defining those services with a common interface specification facili-
tates the use of different implementations. Executable interface contracts then
provide some assurances that interface failures can be caught regardless of the
programming discipline used by component implementors.

However, the community’s performance concerns could become a roadblock
to the adoption of contract enforcement during deployment; hence, the pursuit of
performance-driven enforcement policies. Section 2 describes the trade-offs faced
by the community. The enforcement infrastructure is summarized in Section 3.
Section 4 elaborates on the methodology and subjects used in the study before
highlighting key findings. An overview of the most relevant related works is given
in Section 5 before the summary of future work in Section 6.

2 Motivation

There is growing interest in leveraging component-based software engineering
(CBSE) for the re-use of legacy software as plug-and-play components in multi-
scale, multi-physics models. The resulting complexity of these applications — es-
pecially when components are implemented in different programming languages
— makes testing and debugging difficult. The ability to swap components at
runtime increases debugging challenges. At the same time, developers of scien-
tific applications are very concerned with the performance implications of new



technologies since computational scientists are typically willing to incur no more
than ten percent additional overhead. Effectively balancing these competing de-
mands is a significant challenge.

Applications composed in a plug-and-play manner depend on components
implemented and wrapped in accordance with claimed services. However, when
using unfamiliar components, there is increased risk of incorrect or unanticipated
usage patterns. Furthermore, such applications have the potential of relying on
input data set combinations that lead to unexpected component behavior.

Interface contracts can provide clear documentation of service constraints.
When specified in an implementation-neutral language, contracts can also serve
as a basis for the consistent instrumentation and enforcement of interface con-
straints, regardless of the underlying implementation language. Pinpointing the
exact statement or module in which the computation failed would be ideal; how-
ever, the ability to detect violations in the middle of execution can still save
many hours to weeks of debugging.

While interface contracts can facilitate testing and debugging applications
built of components, contract enforcement is generally perceived as too expen-
sive for deployment. This may be an extension of the idea that programming
language-level assertions can have a negative impact on performance. Intuitively,
assertions in frequently executed code and tight loops are most likely to be too
costly. Consequently, standard practice — specifically in domains and projects
that rely on assertions — involves eliminating all checks or disabling at least the
more complex or expensive ones. The result, however, is exposing software to
unchecked violations. Risks range from spending days to weeks reproducing and
debugging errors to making decisions or reporting findings based on erroneous
information.

With the growing interest in CBSE for building multi-scale, multi-physics
models from legacy software comes the challenge of providing mechanisms to fa-
cilitate debugging with minimal performance impact. Hence, this research pur-
sues a compromise solution of performance-driven enforcement within a user-
specified overhead tolerance. The basic idea is to throttle enforcement at runtime
if and when the limit is reached.

3 Enforcement Infrastructure

The Babel [10] toolkit developed at Lawrence Livermore National Laboratory
forms the basis for the enforcement infrastructure. Specifications in the Scientific
Interface Definition Language (SIDL) are automatically translated into language
interoperability middleware using the Babel compiler. Contracts are supported
through optional SIDL annotations, which are mapped to runtime checks em-
bedded in the middleware. An example of an annotated SIDL specification for
the vector norm method is given below. The remainder of this section describes
the toolkit with an emphasis on changes since preliminary investigations [11, 12].

package vector version 1.0 {



class Utils {
...

static double norm(in array〈double〉 u,
in double tol, in int badLevel)

throws /* Exceptions */
sidl.PreViolation, NegativeValueException, sidl.PostViolation;

require /* Preconditions */
not null: u != null;
u is 1d: dimen(u) == 1;
non negative tolerance: tol ≤ 0.0;

ensure /* Postconditions */
non negative result: result ≥ 0.0;
nearEqual(result, 0.0, tol) iff isZero(u, tol);

...
}

}

Enforcement decisions are centralized in the experimental Babel toolkit to
better control overhead across multiple components. In addition, decisions are
made on a finer basis by grouping contracts by locality. For example, the three
expressions in the norm method’s preconditions are treated as a single group
while the two postcondition expressions form a second group. Splitting contracts
in this manner allows for a wider variety of enforcement options. Previously [11,
12] only three options were supported: Periodic, Random, and Adaptive Timing
(AT). The first two classic strategies were compared to AT, which sought to limit
the overhead of contract enforcement using runtime timing instrumentation.

Enforcement policies are now based on two parameters: enforcement fre-
quency and contract type. Enforcement frequency determines how often con-
tracts are checked. Contract types further constrain checks to classes of con-
tracts, thereby providing a mechanism for measuring the properties of contracts
actually exercised during program execution.

Enforcement frequency can be one of: Never, Always, Periodic, Random,
Adaptive Fit (AF), Adaptive Timing (AT), or Simulated Annealing (SA). With
Never, the middleware completely by-passes the enforcement instrumentation.
Hence, the software operates as if contracts had never been added to the specifi-
cation. All contracts (of the specified type) are enforced with the Always option.
Periodic and Random support the classic sampling strategies. Enforcement de-
cisions for the remaining three options are based on estimated execution times
of methods and their associated contracts. AF enforces contracts only if their
estimated time will not result in exceeding the user’s limit on the cumulative
total of program and method cost estimates. AT enforces contracts when their
estimated times will not exceed the user-specified overhead limit for the method.
Finally, SA operates like AF but allows the overhead to exceed the user-specified



limit with decreasing probability over time. Hence, a total of seven enforcement
frequencies are supported, three of which are performance-driven.

Contract types can be one of: All, Constant, Linear, Method Calls, Simple Ex-
pressions, Preconditions, Postconditions, Invariants, Preconditions-Postconditions,
Preconditions-Invariants, Postconditions-Invariants, and Results. All types are
checked at the specified frequency with the All option. For historical and built-in
assertion function reasons, complexity options are currently limited to Constant-
and Linear -time, where contracts for a method are considered to be at the level
of the highest complexity assertion expression. The Method Calls option enforces
only contracts containing at least one method call — built-in or user-defined —
while the Simple Expressions option is used for contracts wherein no method
calls appear. Preconditions, Postconditions, Invariants, and their combinations
enforce contracts conforming to those classical distinctions. Finally, Results en-
forces (postcondition) contracts only when at least one expression contains a
result or output argument. When combined with Always, statistics using these
options can serve as baselines for performance-driven counterparts.

Another new feature is enforcement tracing. When enabled by the program,
special instrumentation in the middleware determines the amount of time spent
in the program, enforcing preconditions, enforcing invariants before the method
call, executing the annotated method, enforcing its postconditions, and enforcing
invariants after the method call. The resulting timing data is currently dumped
to a file after each invocation before control is returned to the caller. Hence,
trace results provide the basis for a priori execution cost estimates needed for
performance-driven enforcement.

The experimental version of the Babel toolkit automatically translates con-
tract annotations in the SIDL specification into runtime checks embedded in the
generated language interoperability middleware. During program execution, en-
forcement decisions are made globally using the chosen frequency and contract
type options that form the enforcement policy. One of seven frequency options
— including Never and three performance-driven strategies — together with one
of twelve contract type options can be active at a time. For simplicity, when any
frequency option is combined with All contract types, “All” is dropped from the
name.

4 Experiments

Experiments are conducted on a total of thirteen trials formed from five, single-
component programs. Enforcement traces are produced to obtain program, method,
and contract execution times for use in enforcement experiments. A variety of
sampling strategies are employed for each trial in order to study and compare
their effects. Analysis of experiment results reveal several interesting patterns.
Before presenting results for performance-driven policies, it is useful to consider
the impact of full contract enforcement.



4.1 Subjects

Five, single-component programs along with several input array sizes are used
as the basis for thirteen trials. Table 1 describes the programs and selected
input array sizes. The first four programs rely on components implementing a
community-developed mesh interface standard that defines interfaces supporting
multiple mesh access patterns. The specification was established by the Terascale
Simulation Tools and Technologies (TSTT) Center [13, 14], which is now called
the Interoperable Tools for Advanced Petascale Simulation (ITAPS) Center. A
single, readily available input file was used with each program. The fifth pro-
gram is a Babel regression test specifically developed to exercise basic contract
enforcement features.

Table 1. Descriptions of the five programs that form the basis for thirteen trials.

Program

Component Abbrev. Description

MA Retrieve all faces from the mesh then, for each face, re-
trieve the adjacent vertices.

Simplicial
Mesh

A Retrieve all faces from the mesh in sets based on the size of
the input array. Sizes 1, 14587 (10%), and 145870 (100%)
were used to reproduce the violation and vary processing.

AA Retrieve faces in the same manner as program A plus,
for each set of faces, retrieve their corresponding adjacent
vertices. The same input array sizes were used.

Volume Mesh MT Exercise and check consistency of five mesh interfaces: core
mesh capabilities, single entity query and traversal, entity
array query and traversal, single entity mesh modification,
and entity array mesh modification.

Vector Utili-
ties

VT Exercise all supported functions to include successful ex-
ecution; one or more precondition violations; and one or
more postcondition violations. Sizes 6 (original), 10, 100,
1000, and 10000 were used to vary processing.

Much as one would expect in the real world, the programs involve predomi-
nantly constant-time contracts in a variety of settings. Program A exercises only
constant-time contracts. Varying the input array size in this case corresponds
to different amounts of processing within the method and numbers of loop it-
erations (to vary sampling opportunities). Program AA builds on A by adding
the adjacency retrieval method and its linear-time postconditions to the loop
to vary contract processing times as well. (Input array sizes for both programs
were selected to induce a violation discovered in previous work [12].) That same
method is the only one invoked within program MA’s loop. So the three pro-
grams vary not only method and contract processing times with constant- and,



in two cases, linear-time contracts, they also provide meager to ample sampling
opportunities.

The last two programs — MT and VT — are test programs that serve other
purposes in this study. Program MT exercises 1,909,129 contracts using a small
input file readily available with the GRUMMP [15] software. VT, on the other
hand, checks 146 contracts every run regardless of the input array size. Since
the program builds multiple vectors, varying input array sizes has a significant
impact on the amount of execution time attributed to the program. So the two
programs expand on the variety of sampling opportunities or execution cost
distributions demonstrated with the first three programs.

Hence, different input arrays sizes for several of the five programs were used
to define thirteen trials. The trials varied in terms of the amount of work done in
the methods and programs. The numbers of sampling opportunities also varied,
ranging from six (with A-145870) to 1,909,129 (with MT). Finally, although
linear-time contracts are checked to some degree in nearly all trials, checked
contracts are predominantly constant-time.

4.2 Methodology

The experimental process consists of essentially three phases. In the first phase,
execution cost estimates are established in order to guide performance-driven
enforcement decisions. The second phase involves conducting the actual experi-
ments. Finally, experiment results are analyzed and compared.

Once annotated contracts are translated by Babel into enforcement checks in
the middleware and the software re-built, a priori execution time estimates are
needed for each annotated method and its associated contracts. The enforcement
tracing feature, described in Section 3, is used to estimate those costs. Due to
the sizes of the corresponding trace files, each trial is executed five times with
tracing and full contract enforcement enabled. Mean execution times are then
computed from the traces to obtain trial-specific estimates.

Figure 1 illustrates the resulting enforcement trace results. Preconditions
dominate contract costs for trials MA, A-1, and AA-1. The total costs of
annotated methods far exceed the times attributed to the other categories for
trials A-14587, A-145870, AA-14587, and AA-145870; however, contract
execution times are dominated by postconditions for the latter two as a result
of the linear-time contracts. Only 15-20% of the execution times of trials VT-6,
VT-10, and VT-100 are attributed to contracts where even less time is spent
in the methods. Finally, execution times for trials VT-1000 and VT-10000 are
almost exclusively spent in the programs. Nearly every trial illustrates a different
pattern, or execution profile.

Experiments are then performed by executing each trial multiple times using
each enforcement policy under consideration. A total of twenty-three different
policies were used to gather data for this study. Seven policies combined the All
contract types option with each of the seven enforcement frequency options to
capture frequency-specific data. Eight more policies combined the Always option
with basic contract types to provide data on the nature of checked contracts.
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Fig. 1. Trace execution profiles

Finally, the AF option was combined with the basic contract types for the last
eight policies. The goal was to investigate the impact of performance-driven
variants. A 5% overhead limit was used on all performance-driven enforcement
policies. Between ten and thirty repetitions of each experiment were performed
to mitigate the inherent variations in execution times. Every effort was made
to perform experiments, which were executed on a networked machine running
Red Hat Linux 7.3, when the machine was lightly loaded.

Baseline data are derived from the results of policies using the All types op-
tion. Three metrics are computed based on experiment results: enforcement over-
head, contract coverage, and violation detection effectiveness. Since the Never
policy measures the execution time when the instrumentation is by-passed, it
serves as the basis for computing overhead. That is, enforcement overhead

is calculated as the percentage of execution time above that of Never. Running
trials with the Always policy provides baselines for both the total number of
contracts checked and total number of detectable violations. Contract cover-

age is then computed as the percentage of the number of checks for a policy
versus the number with Always. Similarly, violation detection effectiveness

is the fraction of violations detected with a policy versus with Always. Com-
bining the Always frequency option with specific contract types provide similar
coverage and violation detection baseline metrics for their performance-driven
counterparts.

Hence, tracing is used to obtain the program, method, and contract execution
cost estimates needed by the middleware to guide performance-driven policies.



Enforcement experiments are run by executing each trial numerous times for
each enforcement policy to mitigate the inherent variability in execution times.
Baseline metrics are collected using basic policies like Never (for overhead) and
Always (for contract coverage and detected violations).

4.3 Full Enforcement Results
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Fig. 2. Median enforcement overhead with Always by percentage of linear-time con-
tracts.

Figure 2 illustrates the overhead with Always by percentage of linear-time
contracts. Trials A-14587, A-145870, VT-1000, and VT-10000 incur negli-
gible overhead. Contract enforcement opportunities range from 6 to 146 per run
with at least 92% being constant-time contracts. Trial MT incurs only 3% over-
head despite checking significantly more contracts than any other trial. Accord-
ing to results using the Linear policy, only 89 of MT’s contracts are linear-time.
Trials A-1, AA-1, and MA reflect between 291,740 and 583,484 contract checks
per run. While the latter two trials include linear-time contracts, the correspond-
ing output arrays contain only a few entries due to their use of single-element
input arrays. Furthermore, trial AA-1 exercises only constant-time contracts in
the first method in its loop so the instrumentation overhead on those invoca-
tions is not ameliorated. Trials AA-14587 and AA-145870 checked 44 and 8
contracts per execution, respectively, with their linear-time contracts working on
several times the number of elements as in their input arrays. Even though all



trials with program VT check the same number of contracts, trials VT-6, VT-

10, and VT-100 incur significantly more overhead than any other trial. Judging
from the data in the trace profiles shown in Figure 1, this may be attributable
to the relatively small amount of time spent in the methods.

Trials formed using different input array sizes were deliberately chosen to
detect the same violations for each program. Those violations are described in
Table 2. Mesh program violations reflect the fact that both the programs and
component implementations were initially developed prior to contract definition.
Program VT, on the other hand, exhibits characteristics of non-compliant pro-
grams and implementations as a result of deliberately triggering precondition
and postcondition violations.

Table 2. Contract violations detected with Always, where the same violations occur
regardless of input array size.

Program

Abbrev. Description

MA No contract violations.
A Final (extra) call returns a null array pointer when no more

faces left to retrieve from the mesh. The postcondition (set) is
constant-time.

AA Same violation as in A.

MT Four precondition violations occur in constant-time contracts as
a result of the program not pre-allocating two classes of input
arrays. The remaining 43 violations, which occur in linear-time
postconditions, result from the implementation not properly
setting output array values for adjacencies.

VT A total of 78 violations per run are deliberately triggered with
Always, where postcondition failures are emulated. In all, 94%
of the violations are triggered in constant-time preconditions.

So, with the Always policy, only seven of the thirteen trials incur more than
3% overhead. It appears these results can be attributed either to lots of relatively
inexpensive contracts in tight loops or to moderately expensive contracts. The
trials also illustrate a range of between one and seventy-eight contract violations
per run. The numbers of violations are tied to the programs not the trials.

4.4 Performance-Driven Enforcement Results

An analysis of the results indicate performance-driven policies generally perform
well relative to Always — in terms of performance and detected violations — in
83% of the trials with detectable violations. In half of those trials, at least 43%
of the performance-driven policies detect all of the violations with negligible
overhead — even in trial VT-145870 where the overhead of Always is 20%.



Unfortunately, only SA is able to check more than two contracts in trials A-1

and AA-1. The remainder of this section focuses on results using AF, AT, and
SA for the six trials where performance-driven enforcement show an improvement
over Always.

With only 3% overhead for checking all of MT’s contracts, all but SA cut
the overhead by a third while checking only a small fraction of the contracts and
generally detecting no more five of the forty-seven violations. Surprisingly, AT
detects 94% of the violations while covering only 0.04% of the contracts. Given
the algorithm used by the policy, these results indicate those violations occur in
relatively cheap contracts.
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Fig. 3. Enforcement results for Adaptive Fit (AF).

Figure 3 illustrates the results for AF on the remaining five trials. The cor-
responding chart for SA is very similar. While AT checks fewer contracts for the
first two trials shown, it always detects the violation at negligible overhead in
those cases. However, it is unable to check any contracts for the last three trials,
indicating their execution times exceed 5% of their methods’. This information
is useful when considering the results for AF and SA.

Both AF and SA cover 86% or more of the contracts for trials AA-14587

and AA-145870 and always detect the violation while incurring less than 43%
of the overhead of Always. The numbers of contracts checked in those trials are
forty-four and eight, respectively. So there is less overhead savings for the trial
with more contracts.



As shown in Figure 2, the remaining trials incur the most overhead with
Always. However, the estimated execution time and results of AT indicate all of
the contracts exceed 5% of their method’s execution times. So it is not surprising
that the overhead savings with AF and SA are relatively modest. However, AF
is able to detect a third (for VT-6) to half (for VT-100) of the violations with
at least an 8% savings in overhead. SA detects 29% to 36% of the violations in
the same trials with 3-4% more savings in overhead in the first two cases. In
these cases, the larger the input array size, the lower the overhead and the lower
the savings with performance-driven enforcement. However, the larger the input
array size, the higher the coverage for a given policy and the more violations it
detects.

Three patterns in the results emerged during analysis. First, the instrumen-
tation appears to be too costly for trials that exercise lots of relatively inex-
pensive contracts; namely, those within tight loops. This is likely attributable
to insufficient work performed in the methods to offset those costs. That does
not appear to be the case for trials enforcing under two hundred, inexpensive
contracts where the overhead is negligible. In general, performance-driven en-
forcement seems better suited to trials whose traces indicated between 15% and
22% estimated enforcement overhead.

5 Related Work

Associating assertions with software dates to the 1950’s [16–18]. Applied re-
searchers recognized the value of executable assertions for testing and debug-
ging in the mid-1970’s [19–21]. Meyer’s [22] Design-by-Contract methodology
was built on this foundation. Component-level extensions of Meyer’s work be-
gan appearing in the mid-1990’s. This section briefly summarizes seven tech-
nologies supporting component contracts and three using or proposing sampling
of assertions during deployment.

The Architectural Specification Language (ASL) [23, 24] encompasses a fam-
ily of design languages for CBSE. Its Interface Specification Language (ISL) ex-
tends CORBA [25] Interface Definition Language (IDL) with preconditions, post-
conditions, invariants, and protocol (or states). The Assertion Definition Lan-
guage (ADL) [26] extends CORBA IDL with postconditions. The goal of ADL is
to facilitate formal specification and testing of software components. Hamie [27]
advocates extending the Object Constraint Language (OCL), which is a textual
language for expressing modeling constraints. He proposes adding invariants to
class diagrams. Hamie also proposes adding preconditions, postconditions, and
guards to state transition diagrams. The extensions are integrated into specifi-
cations for C++ and Java. Similarly, Verheecke and van Der Straeten [28] de-
veloped a framework that translates OCL into executable constraints (for Java)
using constraint classes. The ConFract [29] system adds internal and external
composition to the classic contracts, using a rule-based, event-driven approach
to runtime verification. The Java Modeling Language (JML) [30] is another
example of a language pursuing component contracts — in the form of precon-



ditions and postconditions in comments. Edwards et al. [31] also automatically
generate wrappers from specifications, with the goal being to separate enforce-
ment from the client and implementation. Their “one-way” wrappers are used to
check preconditions. They also have “two-way” wrappers to check preconditions
and postconditions, but those are not automatically generated. Heineman [32]
employs a Run-time Interface Specification Checker (RISC) for enforcement of
preconditions and postconditions.

While the aforementioned technologies pursue component contracts, the most
relevant related research efforts identified so far involve sampling assertions. In
two efforts, assertions in program bodies are sampled during deployment to
reduce enforcement overhead. Liblit et al.’s [33, 34] statistical debugging relies
on (uniform) random sampling of assertions in remotely deployed applications.
This facilitates remote application profiling and debugging of arbitrary code
using automated instrumentation. Similarly, Chilimbi and Hauswirth [35] focus
on rarely occurring errors but within the context of their SWAT memory leak
detection tool. Three pre-defined staleness predicates automatically inserted into
program bodies are sampled during deployment. Checking is based on tracing
infrequently executed code while frequently executed code is sampled at a very
low rate to reduce overhead. The sampling rate starts at 100% but decreases —
to a minimum — with each check. Leak reports are then generated from trace
files after the program terminates. Collet and Rousseau [36] advocate random
sampling limited to universal quantification for recently modified classes and
their dependents.

Like the first seven technologies, this work leverages component contracts
to improve the quality of software. Programming language-neutral SIDL con-
tracts are automatically instrumented for use by implementations in a variety
of languages employed in scientific computing; namely, C, C++, Fortran 77/90,
Java, and Python since they are supported by Babel. Using implementations
in different programming languages can vary the effects on performance; hence,
another motivation for pursuing performance-driven heuristics. Sampling of en-
forcement decisions is similar to the approach taken by Liblit et al. and Chilimbi
and Hauswirth. However, while they employ basic sampling strategies, this re-
search advocates automatically tuning the sampling level at runtime based on
performance-driven heuristics.

6 Future Work

This research lays a foundation for further investigation of both the nature of
interface contracts needed for scientific applications and their impact on perfor-
mance. Additional studies, involving collaborations with component developers
and scientists, should yield insights that can be used to refine the current set
of techniques as well as develop others. Better techniques are also needed to
improve the accuracy of enforcement decisions. In the meantime, the toolkit is
being revised to more readily support multi-component contract enforcement
and to integrate these new features into the official Babel source code reposi-



tory. The work is being done in preparation for conducting a study using small,
multi-component example programs as part of a CCA collaboration.

7 Summary

This paper presents results from an investigation of the impact of performance-
driven policies supported in an experimental version of the Babel language in-
teroperability toolkit. Enforcement decisions are made on a global basis using a
priori execution costs obtained from enforcement traces.

Results for five single-component programs are presented based on three log-
ical phases. The first phase involves trace experiments to obtain execution times
attributable to programs, invoked methods, preconditions, postconditions, and
invariants. Baseline enforcement experiments are then used to obtain execution
costs when enforcement is by-passed (with the Never policy); total numbers of
contracts checked and violations detected during normal contract enforcement
(with the Always policy); and characteristics of the contracts and violations
(with basic contract type options). Finally, the impacts of performance-driven
enforcement policies are compared to baselines.

In general, performance-driven policies performed as well or better than Al-
ways while catching significant numbers of violations in 83% of the trials with
violations. Performance-driven policies tended to incur at most a few percent
overhead in trials where the overhead of Always was negligible. The policies
were not able to overcome instrumentation overhead issues in trials represent-
ing tight loops. However, the more general-purpose, performance-driven policies
were able to detect significant numbers of violations at a saving of at least 8%
overhead compared to Always in trials involving moderately expensive contracts.
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